

## Sustainable Beauty through AI: Leveraging Artificial Intelligence for Eco-Friendly Product Recommendations and Personalized Skincare

Lin Fan<sup>1</sup>, Lavanchawee Sujarittanonta<sup>2</sup>

<sup>1</sup>*College of Management, National Sun Yat-sen University, Kaohsiung City 804, Taiwan*

<sup>2</sup>*International College, Rajamangala University of Technology Phra Nakhon (RMUTP), Bangkok 10800, Thailand*

<sup>1</sup>*e-mail: lavanchawee.s@rmutp.ac.th*

<sup>2</sup>*e-mail: linfan@cm.nsysu.edu.tw*

**Received:** Nov 27, 2025 **Revised:** Dec 24, 2025 **Accepted:** Dec 26, 2025

### Abstract

Growing environmental concerns within the beauty industry have prompted both consumers and manufacturers to seek sustainable solutions. This study investigates the transformative potential of artificial intelligence (AI) in promoting eco-conscious practices across the beauty sector. By analyzing digital data sources such as social media content, product reviews, and skincare routines, we develop an AI-driven framework that delivers personalized, environmentally friendly product recommendations, identifies sustainable ingredients, and suggests optimized packaging strategies. Our findings indicate that AI technologies can meaningfully reduce waste, foster responsible consumption patterns, and incentivize brands to adopt more sustainable business models. This research adds to the emerging literature on sustainable beauty and underscores AI's capacity to catalyze positive environmental transformation.

**Keywords:** Sustainable beauty; Artificial Intelligence; Eco-friendly products; Personalized skincare; Environmental impact

### 1. Introduction

The integration of artificial intelligence (AI) into the beauty industry represents a transformative opportunity to advance environmental sustainability while responding to dynamic consumer expectations. As global awareness of climate change, pollution, and resource depletion intensifies,

consumers are increasingly demanding transparency, ethical sourcing, and eco-conscious innovation from the brands they support (Niinimäki et al., 2020). In response, beauty companies are exploring the adoption of AI technologies as a means of reducing their ecological footprint and building trust through data-driven personalization and sustainable innovation.

In this context, the concept of sustainable beauty through AI can be defined as the strategic use of intelligent computational systems—including machine learning, natural language processing, and data analytics—to minimize environmental impact while enhancing the efficiency and ethical quality of beauty products and services. AI enables companies to analyze vast and diverse data sources, such as user reviews, dermatological databases, ingredient lists, and supply chain metrics, in order to develop greener formulations, optimize packaging, and offer personalized skincare solutions (Davenport & Ronanki, 2018; Xu et al., 2022). These systems support environmentally conscious decision-making at every stage of the product lifecycle.

AI also contributes significantly to sustainability through four core mechanisms. First, it facilitates environmental footprint reduction by enabling resource-efficient product design and minimizing waste throughout production and distribution processes (Luo et al., 2022). Second, it enhances transparency and trust by providing consumers with clear, traceable information about ingredients, sourcing, and manufacturing practices—often through interactive platforms or AI-powered tools (Akhtar & Khan, 2020). Third, AI supports personalization, allowing consumers to receive tailored skincare recommendations based on their unique skin profiles, which can reduce overconsumption and product mismatch (Sun et al., 2021). Finally, AI enables sustainable influence by identifying and partnering with social media influencers who promote eco-friendly practices, thereby extending the reach and impact of sustainability messaging (Kapitan et al., 2019).

While these benefits are promising, the implementation of AI in sustainable beauty is not without its challenges. Issues related to data privacy, algorithmic bias, regulatory compliance, and the environmental cost of AI infrastructure itself warrant careful consideration (Bauknecht et al., 2023; Strubell et al., 2019). Furthermore, the effectiveness of AI-driven sustainability initiatives depends on the quality of the input data, cross-sector collaboration, and the ethical design of AI systems (Vinuesa et al., 2020).

This study seeks to evaluate the role of AI in facilitating sustainable beauty practices by addressing two primary research questions: What are the critical success factors in implementing AI for sustainability in the beauty industry? And what challenges and opportunities arise in integrating AI with eco-friendly product development? Through an interdisciplinary lens combining technology, sustainability science, and consumer behavior, this research contributes to the growing body of knowledge at the intersection of artificial intelligence and sustainable innovation.

### **Research Questions**

This study investigates the role of artificial intelligence in advancing sustainable practices within the beauty industry. It explores how AI technologies can be effectively implemented to support environmentally responsible product development, reduce waste, and enhance consumer engagement with ethical beauty solutions. Central to this inquiry are two guiding research questions: What are the critical success factors for implementing AI in support of sustainability in the beauty industry? And what challenges and opportunities emerge when AI is integrated into the development of eco-friendly beauty products? By addressing these questions, the study aims to identify both the enabling conditions and potential barriers that influence the successful adoption of AI-driven sustainability initiatives in this rapidly evolving sector.

## **2. Literature Review**

The intersection of artificial intelligence (AI) and sustainability in the beauty industry has attracted increasing scholarly and commercial interest due to its transformative potential to reshape conventional business models and foster eco-friendly innovation. The existing body of literature highlights that AI technologies contribute to sustainability across five interconnected domains: product development, supply chain optimization, personalized beauty, waste reduction, and consumer education. Together, these areas demonstrate how intelligent systems can serve as powerful enablers of environmentally responsible practices while addressing the growing demands of a socially and ethically conscious consumer base. The following sections addresses how AI has been incorporated into theoretical developments, product development, supply chain optimization, and other marketing-related aspects such as personalized beauty, waste reduction, and consumer education



## 2.1 Theoretical developments for AI research on CB

Value co-creation approach for sustainable consumption through digitization initiatives in the retail industry has been addressed by Lumivalo et al. (2024, 2025), which explains why retail shops are investing in their social media presence and online image. While Haryono et al.'s (2024) empirical study of skin care clean beauty consumers in Asia was explored based on sustainable consumption theory.

When it comes to green consumerism, there are increasingly more research on Artificial Intelligence (AI), sustainability, and consumer behavior (CB). In particular, in 2024 and 2025, the focus is on how AI can be seen as bridging purchase intention and purchase behavior gap, i.e. a consumer's desire to be green versus their actual purchase actions.

The Stimulus-Organism-Response (S-O-R) model is the dominant framework for understanding how AI acts as the stimuli (S) to affect the consumer (O) and produces sustainable purchase (R). In other words, stimuli such as algorithm recommendations can influence the human consumer to buy green products and services, e.g. studies by Vafaei-Zadeh et al. (2025), Imran et al. (2025). To enhance the consumer's perceived emotional and social value, Cao & Liu's study (2025) proposed that AI can be used as the stimuli, subsequently leading to pro-environmental actions.

“Digital nudging” is another new theoretical development in that later part of 2025, by adapting combining Technology Acceptance Model (TAM), such as studies by Fruttaldo (2024), Pillai et al. (2025) and Balaskas et al., (2025) which looked at how behavior can be changed through digital / technological persuasion.

## 2.2 Product Development

AI plays a pivotal role in accelerating the development of sustainable and ethical beauty products by enabling more precise ingredient selection and formulation design. Through techniques such as natural language processing and machine learning, AI systems can efficiently scan and analyze vast, complex ingredient databases to identify environmentally friendly alternatives to traditional synthetic compounds. This capability not only speeds up research and innovation but also reduces reliance on potentially harmful chemicals, aligning product design with green chemistry principles (Leong et al., 2022). For example, L'Oréal's AI platform employs predictive modeling to assess both the

dermatological efficacy and environmental impact of new formulations, facilitating faster iteration cycles with a lower ecological footprint (L'Oréal, 2021). Moreover, AI facilitates real-time monitoring and verification of ingredient sourcing, thereby enhancing supply chain transparency and enabling brands to uphold strict ethical and sustainability standards. Advancements in AI-powered molecular modeling further support the discovery of biodegradable and non-toxic ingredients that match the performance of conventional ones, thus simultaneously improving product safety for consumers and reducing environmental harm (Jiang et al., 2023). This capacity for rapid, data-driven innovation allows brands to integrate sustainability at the earliest stages of product conception, rather than as an afterthought.

### **2.3 Supply Chain Optimization**

Sustainability in the beauty industry's supply chain is increasingly driven by AI's ability to improve efficiency and reduce waste. Machine learning algorithms enable more accurate demand forecasting, which is crucial for mitigating the problem of overproduction—a major source of environmental waste in cosmetics manufacturing (Govindan et al., 2020). For example, Procter & Gamble has integrated AI-powered supply chain analytics that track raw material availability, predict market fluctuations, and optimize production schedules. These improvements have led to measurable decreases in CO<sub>2</sub> emissions and material waste throughout the supply chain (P&G, 2021). AI further enhances logistics by identifying inefficiencies such as redundant packaging and suboptimal transportation routes, suggesting greener alternatives that reduce carbon footprints. The advent of blockchain-integrated AI models offers real-time verification of ethical sourcing practices and enables comprehensive carbon footprint assessments, fostering greater accountability and transparency in complex global supply networks (Saberi et al., 2019). Collectively, these AI-driven advancements facilitate more sustainable resource management and support a shift towards circular economy principles by promoting reuse, recycling, and minimal environmental disruption.

### **2.4 Personalized Beauty**

The personalization of beauty products and services through AI is reshaping consumer interaction by tailoring solutions to individual skin conditions, preferences, and environmental contexts. Machine learning models analyze biometric data, user feedback, and external factors such as weather or pollution

levels to recommend products that better fit individual needs, thereby reducing the trial-and-error purchasing process that often leads to wasteful consumption (Choi & Lee, 2020). For instance, Shiseido's Optune system integrates AI with IoT sensors to customize skincare regimens in real time, adapting to daily variations in skin condition and environmental factors such as humidity and UV exposure, improving treatment efficacy while minimizing unnecessary product use (Shiseido, 2020). AI-powered virtual try-on tools, such as those developed by Modiface and deployed by brands like Sephora and Estée Lauder, further reduce environmental impact by replacing physical product testers and samples with digital simulations. This innovation not only curtails product waste but also improves hygiene and accessibility for consumers, illustrating how AI personalization can align consumer satisfaction with sustainability goals (Nguyen et al., 2022).

## 2.5 Waste Reduction

Beyond curbing overproduction, AI significantly contributes to waste reduction through intelligent packaging design and factory-level waste management. AI algorithms assess the entire lifecycle of packaging materials and recommend sustainable options such as lightweight, biodegradable, or recyclable components that minimize environmental harm (Singh & Ordoñez, 2022). For example, Unilever's smart packaging initiatives leverage AI to reduce plastic usage by up to 50%, increase recyclability, and incorporate "design for disassembly" principles to facilitate future upcycling efforts. Furthermore, AI-driven waste analytics platforms enable real-time monitoring of manufacturing waste streams, identifying key points of inefficiency and suggesting actionable interventions to reduce landfill contributions and promote material reuse (Lee et al., 2021). These technological innovations empower beauty companies to implement circular design principles, ultimately fostering more responsible consumption patterns and reducing the environmental footprint of packaging waste.

## 2.6 Consumer Education

AI's expanding role in consumer education enhances sustainable consumption by providing personalized, accessible, and dynamic information on product sustainability. Intelligent chatbots, voice assistants, and recommendation engines offer tailored guidance on ingredient safety, environmental impact, and ethical certifications, empowering consumers to make more informed and responsible purchasing decisions (Nguyen et al., 2021). Mobile applications such as CodeCheck and Yuka utilize

AI to scan product barcodes and instantly deliver sustainability scores, carbon footprint data, and ethical information, promoting transparency and building consumer trust. Moreover, AI facilitates adaptive educational campaigns that respond to individual user behaviors and preferences, making sustainability messaging more engaging, relevant, and effective in promoting eco-conscious habits (Wang & Yu, 2022). This dynamic interaction fosters a more informed consumer base that actively participates in the transition toward sustainable beauty.

Together, this literature illustrates the wide-ranging applicability of AI in advancing environmental responsibility within the beauty industry. AI not only optimizes operational efficiencies and ethical product development but also catalyzes a systemic shift toward circular economy models by integrating sustainability across product lifecycles and consumer experiences. However, the literature also acknowledges the need to address significant challenges such as data governance, the energy demands of AI infrastructure, and potential biases within algorithms—issues critical to ensuring AI's contribution to genuine sustainability rather than superficial greenwashing (Vinuesa et al., 2020; Strubell et al., 2019). To fully realize AI's potential, future research must examine how to scale these innovations globally while maintaining ethical integrity and minimizing environmental trade-offs.

### **3. Methodology**

This study adopts a qualitative content analysis approach to examine how artificial intelligence (AI) is being leveraged to support sustainability in the beauty industry. The analysis is grounded in interpretivist traditions, which prioritize the subjective meanings and patterns emerging from digital discourse. Content analysis was selected for its strength in identifying and interpreting latent meanings within visual and textual social media content (Krippendorff, 2018).

The coding stage of content analysis was conducted by a French male scholar and a Thai female scholar, in order to reduce cultural bias, and provides a measure of diversity for methodological strength, allowing for the triangulation of "etic" (outsider) and "emic" (insider) perspectives. The coding protocol was designed with care, taking into account linguistic nuances and cultural interpretations. This involved a blind coding phase, where both scholars coded the entire dataset independently without

mutual consultation, followed by calibration through joint coding, where both scholars discussed the discrepancies from the blind coding phase. Thus, the reliability of the content analysis was achieved.

### 3.1 Data Collection

Data were collected from publicly available digital content across three primary platforms: YouTube, Instagram, and TikTok. These platforms were selected due to their prominence in the beauty sector and their role in shaping consumer behavior and brand engagement. The timeframe for data collection spanned April 10 to May 24, 2025.

Using a purposive sampling strategy, we selected content from beauty influencers and sustainability-focused creators who explicitly discussed AI, eco-conscious products, or sustainable practices. Criteria for inclusion included: (1) content with over 10,000 views or likes to ensure relevance and visibility, (2) posts that included hashtags such as #SustainableBeauty, #AIinSkincare, #EcoBeauty, or #GreenTech, and (3) creators with demonstrated engagement in sustainability-related discussions in prior content.

In total, 52 unique content pieces were analyzed: 20 YouTube videos, 18 TikTok clips, and 14 Instagram posts or stories, including associated captions and user comments. A spreadsheet was used to catalog metadata including publication date, creator name, platform, engagement metrics, and key sustainability-related content features.

### 3.2 Analytical Framework

The data were analyzed using thematic analysis, following Braun and Clarke's (2006) six-phase framework, which included:

*Familiarization with the Data:* The researcher repeatedly reviewed video transcripts, captions, and post content to immerse themselves in the material.

*Generating Initial Codes:* Textual segments were annotated with open codes related to sustainability, AI functionality, consumer influence, and product use.

*Searching for Themes:* Related codes were clustered to form broader thematic categories (e.g., “ingredient transparency,” “virtual try-on technologies,” “influencer-brand alignment”).

*Reviewing Themes:* Preliminary themes were refined by cross-referencing against the data corpus to ensure internal consistency and distinctiveness.

*Defining and Naming Themes:* Final themes were named and defined with illustrative descriptions.

*Producing the Report:* Extracts were selected to exemplify each theme and linked to academic literature in the findings section.

### 3.3 Sample Extracts

Below are selected examples from the analyzed content to illustrate how themes were coded and interpreted:

#### 3.3.1 Eco-Friendly Product Recommendations

YouTube influencer, April 10, 2025: *"I've been using this AI app that scans my skincare shelf and tells me which products have clean ingredients or if there's a greener alternative. Honestly, it changed how I shop."*

→ Coded as: AI recommendation system, sustainable alternatives, consumer awareness.

#### 3.3.2 Ingredient Transparency

Instagram post by @EcoSkinJournal, April 24, 2025: *"Did you know this cleanser uses AI to detect micro-irritants in your skin and adjusts its formula based on your reaction history? Plus, all ingredients are biodegradable."*

→ Coded as: ingredient transparency, adaptive AI, green formulation.

#### 3.3.3 Personalized Routines

TikTok creator @GlowyBot, May 5, 2025: *"This virtual skincare tool gave me a daily routine based on my acne, oil levels, and climate. I've stopped over-buying products I don't need!"*

→ Coded as: AI personalization, waste reduction, user satisfaction.

#### 3.3.4 Sustainable Packaging Analysis

YouTube brand campaign, May 12, 2025: *"Using AI lifecycle analysis, we redesigned our packaging to be 85% compostable and reduced plastic by 60%."*

→ Coded as: AI packaging design, material optimization, corporate sustainability.

These extracts demonstrate how AI is operationalized in beauty discourse and reveal consumer perceptions of its role in sustainable innovation.

### 3.3.5 Ethical Considerations

As the study analyzes publicly accessible content, no ethical approval was required. However, creators' usernames were anonymized or pseudonymized where appropriate to preserve privacy. Comments and posts were not quoted in ways that would enable reverse identification.

## 4. Analysis and Key Insights

As sustainability becomes a dominant value among beauty consumers, brands are increasingly leveraging AI to adapt to evolving expectations. This section presents key themes identified in the data, each illustrating how AI contributes to sustainability in beauty through innovation, personalization, and efficiency. The findings of this study provide empirical support for related theories, suggesting that AI-driven personalization is an efficient strategy in recommending eco-friendly skin care. For example, the S-O-R framework, with Hyper-personalized AI diagnostics (of acne condition, UV intensity) as the stimulus (S), consumer's anxiety about complexion or perceived effectiveness of skincare product as the organism (O), and finally the reduced consumption by purchasing the recommended skincare product, rather than the usual behavior of trial-and-error of buying any and every new-fangled skincare on the shelf or in the advertisements (response R).

### 4.1 Eco-Friendly Product Recommendations

AI systems increasingly function as intelligent filters that analyze consumer-generated and influencer content to recommend sustainable alternatives tailored to individual needs (Sun et al., 2021). For instance, machine learning algorithms assess skincare routines shared by influencers, parse sentiment from product reviews, and cross-reference ingredient lists to suggest more environmentally responsible options. This approach supports conscious consumption by offering curated recommendations aligned with users' values and sustainability goals.

### 4.2 Ingredient Transparency

Another prominent theme involves the use of AI to enhance transparency regarding product composition. AI tools extract and synthesize information from scientific literature and public product databases to highlight natural, organic, and ethically sourced ingredients (Akhtar & Khan, 2020). This empowers consumers to evaluate products more critically, supporting informed decision-making and

reinforcing trust between brands and their audiences. Some AI-driven platforms also provide ingredient toxicity ratings or sustainability scores to further guide consumer behavior.

#### 4.3 Personalized Routines and Responsible Consumption

Personalization is a core function of AI in skincare, with deep learning models tailoring routines based on biometric data, lifestyle inputs, and user preferences (Leong et al., 2022). The study found that consumers are increasingly turning to AI-powered diagnostic tools, such as facial scans and skin quizzes, to receive individualized product recommendations. This reduces the likelihood of ineffective purchases and curbs waste by minimizing the need for trial-and-error product testing.

#### 4.4 Influencer Partnership Alignment

AI tools also assist brands in identifying influencer partners whose values and audiences align with sustainability objectives. By analyzing engagement metrics, content tone, and brand affiliations, AI systems match companies with influencers who demonstrate authentic eco-conscious advocacy (Kapitan et al., 2019). These partnerships enhance the credibility and reach of sustainability messaging while strengthening brand-consumer relationships within ethical consumer communities.

#### 4.5 Sustainable Packaging Analysis

Packaging emerged as a critical area for sustainable intervention. AI enables environmental impact assessments of current packaging designs by analyzing material composition, recyclability, and life-cycle metrics (Singh & Ordoñez, 2022). These insights help brands redesign packaging with biodegradable or reusable alternatives, directly reducing plastic usage and packaging waste. Some brands have used generative AI to create eco-friendly packaging prototypes that comply with circular design principles.

#### 4.6 Virtual Try-On Technologies

Virtual try-on technologies powered by computer vision and augmented reality allow consumers to test cosmetic products digitally. These tools significantly reduce the environmental footprint of physical samples and product returns, two major sources of waste in the beauty sector (Choi & Lee, 2020). The study found widespread consumer engagement with virtual try-on tools across platforms like Instagram, Sephora's mobile app, and e-commerce sites, indicating strong potential for scalable sustainability benefits.

#### 4.7 AI-Driven Trend Forecasting

Finally, AI's role in trend forecasting offers proactive sustainability advantages. By analyzing social media data, search trends, and sales patterns, AI can predict shifts in consumer preferences (Luo et al., 2022). This allows brands to align production volumes more accurately with market demand, reducing overproduction and the associated environmental costs. Such predictive tools contribute to leaner supply chains and more efficient resource allocation.

We refer the reader to this summary of our key findings:

| Theme                                                    | AI Function                                                                              | Sustainability Impact                                                                      | Example/Application                                                                                              |
|----------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <b>Eco-Friendly Product Recommendations</b>              | AI analyzes consumer and influencer content to suggest sustainable product alternatives. | Encourages conscious consumption by aligning recommendations with sustainability values.   | Machine learning algorithms parsing influencer skincare routines and reviews to recommend eco-friendly products. |
| <b>Ingredient Transparency</b>                           | AI extracts and synthesizes data on product ingredients from literature and databases.   | Empowers informed decisions and builds trust through ingredient and toxicity transparency. | Platforms providing ingredient toxicity ratings and sustainability scores for cosmetics.                         |
| <b>Personalized Routines and Responsible Consumption</b> | Deep learning models tailor skincare routines based on biometric and lifestyle data.     | Reduces trial-and-error purchases, minimizing product waste and overconsumption.           | AI-powered facial scans and quizzes recommending individualized products and regimens.                           |
| <b>Influencer Partnership Alignment</b>                  | AI analyzes influencer content and engagement to identify sustainable brand partners.    | Enhances credibility and effectiveness of sustainability messaging via authentic advocacy. | Matching brands with eco-conscious influencers based on content tone and audience alignment.                     |

|                                       |                                                                                                     |                                                                                                |                                                                                                         |
|---------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| <b>Sustainable Packaging Analysis</b> | AI evaluates packaging materials, recyclability, and life-cycle impacts for redesign opportunities. | Reduces plastic use and packaging waste via biodegradable and reusable design solutions.       | Generative AI creating prototypes for eco-friendly, circular economy-compliant packaging.               |
| <b>Virtual Try-On Technologies</b>    | Computer vision and augmented reality enable digital product testing and visualization.             | Cuts down physical sample waste and reduces product returns, lowering environmental footprint. | Virtual try-on tools on Instagram, Sephora apps, and e-commerce platforms engaging consumers digitally. |
| <b>AI-Driven Trend Forecasting</b>    | AI analyzes social and market data to predict consumer trends and demand fluctuations.              | Reduces overproduction and waste by aligning supply with actual demand.                        | Brands using AI to forecast trends and adjust production volumes accordingly for leaner supply chains.  |

## 5. Conclusion

This study has explored how artificial intelligence (AI) is being strategically employed to support sustainability across multiple dimensions of the beauty industry. Drawing on qualitative content analysis of digital discourse on platforms such as YouTube, TikTok, and Instagram, the research has highlighted the growing integration of AI technologies in promoting eco-conscious product development, enhancing ingredient transparency, enabling personalized skincare routines, optimizing packaging, and improving influencer-brand alignment. These applications collectively demonstrate the potential for AI to facilitate more ethical, efficient, and environmentally responsible practices in beauty, aligning corporate innovation with the demands of sustainability-conscious consumers.

The findings suggest that AI serves as both a technological enabler and a cultural mediator, shaping consumer perceptions of sustainability while offering brands actionable tools to reduce their environmental impact. Importantly, AI's ability to personalize beauty routines and streamline consumption not only enhances customer satisfaction but also contributes to reducing overproduction and product waste—two persistent challenges in the cosmetics sector. Moreover, the use of AI in



sustainable packaging analysis and virtual try-on technologies illustrates how digital transformation can directly address material efficiency and circular design goals.

However, the research also underscores that the deployment of AI in sustainable beauty is not without complications. Concerns regarding data privacy, algorithmic transparency, and the environmental cost of AI infrastructure warrant ongoing scrutiny. Additionally, the success of AI-driven sustainability initiatives hinges on the quality and inclusivity of underlying data, as well as the ethical orientation of system design and implementation. As such, brands must adopt a reflexive and interdisciplinary approach to AI integration, one that considers not only environmental outcomes but also social responsibility and digital ethics.

Therefore, this study highlights a key regional insight: Asian influencers often promote natural, holistic beauty values that align well with AI-driven personalization, enhancing cultural relevance across markets. AI emerges not just as a tool but as a catalyst for sustainability in beauty—enabling waste reduction, personalized care, transparent supply chains, and more strategic branding. To scale these innovations responsibly, collaboration between industry stakeholders and regulators is essential. Future research should also address the ethical dimensions and global scalability of AI in sustainable beauty.

In conclusion, AI represents a powerful catalyst for sustainable innovation in the beauty industry, offering pathways to reconfigure product lifecycles, reshape consumer engagement, and support the transition toward more responsible production and consumption models. Future research should continue to investigate the long-term impacts of AI adoption on environmental performance metrics, consumer trust, and regulatory frameworks, while exploring how these technologies can scale equitably across global markets. As sustainability becomes a defining value in the post-digital beauty economy, the ethical application of AI will be central to realizing its transformative potential.

## References

Akhtar, P., & Khan, Z. (2020). Mapping the links between sustainable supply chain management and sustainable development goals: A bibliometric analysis. *Benchmarking: An International Journal*, 27(7), 2241–2260. <https://doi.org/10.1108/BIJ-03-2019-0115>

Balaskas, S., Yfantidou, I., Nikolopoulos, T., & Komis, K. (2025). The Psychology of EdTech Nudging: Persuasion, Cognitive Load, and Intrinsic Motivation. *European Journal of Investigation in Health, Psychology and Education*, 15(9), 179.

Bauknecht, J., Reisch, L. A., & Thøgersen, J. (2023). Green AI: Addressing sustainability in artificial intelligence applications. *Sustainability Science*, 18(1), 23–34.  
<https://doi.org/10.1007/s11625-022-01200-1>

Bauknecht, D., Pfeifer, M., & Gärtner, M. (2023). AI in the circular economy: Potential and limits. *Sustainability*, 15(3), 1289. <https://doi.org/10.3390/su15031289>

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research in Psychology*, 3(2), 77–101. <https://doi.org/10.1191/1478088706qp063oa>

Cao, P., & Liu, S. (2023). The impact of artificial intelligence technology stimuli on sustainable consumption behavior: Evidence from ant forest users in China. *Behavioral Sciences*, 13(7), 604.

Choi, J., & Lee, K. (2020). Virtual try-on technology as a sustainable retail innovation: Reducing returns and waste. *Journal of Retailing and Consumer Services*, 57, 102230.  
<https://doi.org/10.1016/j.jretconser.2020.102230>

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. *Harvard Business Review*, 96(1), 108–116.

Fruttaldo, S. (2024). Design for behavioural change: study of a concept and recommendations for information systems supporting eco-driving (Doctoral dissertation, Loughborough University).

Govindan, K., Soleimani, H., & Kannan, D. (2020). Sustainable supply chain management: A review and research agenda. *International Journal of Production Economics*, 194, 173–182.  
<https://doi.org/10.1016/j.ijpe.2017.03.008>

Haryono, A. T., & Lestari, S. P. (2024). Exploration of factors that influence sustainable consumption behavior (empirical study of skin care clean beauty consumers in Semarang city). *Jurnal Info Sains: Informatika dan Sains*, 14(01), 931-942.



Imran, M., Noor, M., & Ansari, H. W. A. (2025). Use of AI and E-waste Recycling Behavior through the intervening role of consumer awareness: A view of SOR theory. *Strategic Business Research*, 100026.

Jiang, L., Zhang, M., & Cheng, Q. (2023). Green AI for green chemistry: Emerging tools for eco-friendly formulation in the cosmetics industry. *Computational Materials Science*, 220, 111221. <https://doi.org/10.1016/j.commatsci.2023.111221>

Kapitan, S., Kennedy, A.-M., & Berth, N. (2019). Sustainably transforming value creation: Using design thinking in social marketing. *Journal of Business Research*, 103, 408–421. <https://doi.org/10.1016/j.jbusres.2019.01.021>

Krippendorff, K. (2018). *Content analysis: An introduction to its methodology* (4th ed.). SAGE Publications.

Lee, H., Kim, J., & Park, S. (2021). Smart factory applications of AI in waste monitoring and management. *Journal of Cleaner Production*, 312, 127798. <https://doi.org/10.1016/j.jclepro.2021.127798>

Leong, L.-Y., Hew, T.-S., Tan, G. W.-H., & Ooi, K.-B. (2022). Predicting the sustainability of green skincare products using machine learning. *Technological Forecasting and Social Change*, 174, 121257. <https://doi.org/10.1016/j.techfore.2021.121257>

L'Oréal. (2021). Beauty Tech: Sustainability innovation through AI and data science. Retrieved from <https://www.loreal.com>

Lumivalo, J., Tuunanen, T., & Salo, M. (2024). Value co-destruction: a conceptual review and future research agenda. *Journal of Service Research*, 27(2), 159-176.

Lumivalo, J., Clements, K., & Hannuksela, E. S. (2024). Digitalization for Sustainable Consumption: Co-Creating and Co-Destroying Value Through Digital Initiatives in Retail. *Pacific Asia Journal of the Association for Information Systems*, (2).

Luo, C., Wu, L., & Chiong, R. (2022). Environmental sustainability in beauty product manufacturing through AI-driven supply chain optimization. *Journal of Cleaner Production*, 338, 130678. <https://doi.org/10.1016/j.jclepro.2022.130678>

Luo, J., Pan, Y., & Zhang, X. (2022). AI-driven smart production and green manufacturing. *Journal of Cleaner Production*, 352, 131602. <https://doi.org/10.1016/j.jclepro.2022.131602>

Nguyen, T., Simkin, L., & Canhoto, A. (2021). The dark and bright sides of AI in marketing. *Journal of Business Research*, 136, 274–286. <https://doi.org/10.1016/j.jbusres.2021.07.035>

Nguyen, T., Zhang, Y., & Lee, S. (2022). Virtual try-on and consumer environmental behavior: The moderating role of eco-consciousness. *Journal of Retailing and Consumer Services*, 66, 102922. <https://doi.org/10.1016/j.jretconser.2022.102922>

Niinimäki, K., Peters, G., Dahlbo, H., Perry, P., Rissanen, T., & Gwilt, A. (2020). The environmental price of fast fashion and beauty: Lifecycle considerations. *Nature Reviews Earth & Environment*, 1(4), 189–200. <https://doi.org/10.1038/s43017-020-0039-9>

Pillai, K. R., Kainthaje, A., & Ashique Ali, K. A. (2025). Nudging Toward Consumer Choices: Current Status and Future Directions. *Sustainable Data Management: Navigating Big Data, Communication Technology, and Business Digital Leadership*. Volume 2, 187-208.

P&G. (2021). Sustainability and AI: Using data to transform supply chain impact. Retrieved from <https://us.pg.com/sustainability>

Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. *International Journal of Production Research*, 57(7), 2117–2135. <https://doi.org/10.1080/00207543.2018.1533261>

Singh, S., & Ordoñez, I. (2022). Designing for circularity: AI applications for sustainable packaging. *Resources, Conservation and Recycling*, 179, 106111. <https://doi.org/10.1016/j.resconrec.2021.106111>

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 3645–3650. <https://doi.org/10.18653/v1/P19-1355>

Sun, Y., Wang, Y., & Huang, Y. (2021). Artificial intelligence and personalization in skincare: Opportunities for sustainable consumption. *Technological Forecasting and Social Change*, 173, 121068. <https://doi.org/10.1016/j.techfore.2021.121068>

Sun, Y., Liu, H., & Wang, X. (2021). The role of artificial intelligence in enhancing sustainable consumption. *Sustainable Production and Consumption*, 27, 1049–1060.  
<https://doi.org/10.1016/j.spc.2021.02.002>

Sun, Y., Lim, J., & Oh, K. (2021). AI in personalized skincare: Impacts on product design and consumption reduction. *Computers in Human Behavior*, 117, 106655.  
<https://doi.org/10.1016/j.chb.2020.106655>

Vafaei-Zadeh, A., Nikbin, D., Wong, S. L., & Hanifah, H. (2025). Investigating factors influencing AI customer service adoption: An integrated model of stimulus–organism–response (SOR) and task-technology fit (TTF) theory. *Asia Pacific Journal of Marketing and Logistics*, 37(6), 1465-1502.

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Nerini, F. F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. *Nature Communications*, 11, 233. <https://doi.org/10.1038/s41467-019-14108-y>

Wang, H., & Yu, Y. (2022). AI and sustainable consumption: Bridging the gap between awareness and action. *Sustainability*, 14(2), 876. <https://doi.org/10.3390/su14020876>

Xu, Y., Jin, S., & Kim, H. (2022). AI-enhanced sustainable product development in the cosmetic industry: A case study approach. *Sustainability*, 14(7), 3920.  
<https://doi.org/10.3390/su14073920>